Optimal Oracle Inequality for Aggregation of Classifiers Under Low Noise Condition
نویسنده
چکیده
We consider the problem of optimality, in a minimax sense, and adaptivity to the margin and to regularity in binary classification. We prove an oracle inequality, under the margin assumption (low noise condition), satisfied by an aggregation procedure which uses exponential weights. This oracle inequality has an optimal residual: (logM/n) where κ is the margin parameter, M the number of classifiers to aggregate and n the number of observations. We use this inequality first to construct minimax classifiers under margin and regularity assumptions and second to aggregate them to obtain a classifier which is adaptive both to the margin and regularity. Moreover, by aggregating plug-in classifiers (only log n), we provide an easily implementable classifier adaptive both to the margin and to regularity.
منابع مشابه
Suboptimality of Penalized Empirical Risk Minimization in Classification
Let F be a set of M classification procedures with values in [−1, 1]. Given a loss function, we want to construct a procedure which mimics at the best possible rate the best procedure in F . This fastest rate is called optimal rate of aggregation. Considering a continuous scale of loss functions with various types of convexity, we prove that optimal rates of aggregation can be either ((logM)/n)...
متن کاملNuclear Norm Penalization and Optimal Rates for Noisy Low-rank Matrix Completion
This paper deals with the trace regression model where n entries or linear combinations of entries of an unknown m1 × m2 matrix A0 corrupted by noise are observed. We propose a new nuclear norm penalized estimator of A0 and establish a general sharp oracle inequality for this estimator for arbitrary values of n,m1,m2 under the condition of isometry in expectation. Then this method is applied to...
متن کاملA Statistical Convergence Perspective of Algorithms for Rank Aggregation from Pairwise Data
There has been much interest recently in the problem of rank aggregation from pairwise data. A natural question that arises is: under what sorts of statistical assumptions do various rank aggregation algorithms converge to an ‘optimal’ ranking? In this paper, we consider this question in a natural setting where pairwise comparisons are drawn randomly and independently from some underlying proba...
متن کاملCompeting against the Best Nearest Neighbor Filter in Regression
Designing statistical procedures that are provably almost as accurate as the best one in a given family is one of central topics in statistics and learning theory. Oracle inequalities offer then a convenient theoretical framework for evaluating different strategies, which can be roughly classified into two classes: selection and aggregation strategies. The ultimate goal is to design strategies ...
متن کاملOptimal aggregation of affine estimators
We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinati...
متن کامل